It explains a lot about the design of Python container classes, and the boundaries of polymorphism / duck typing with them, and mutation between them.
I don't always agree with the choices made in Python's container APIs...but I always want to understand them as well as possible.
Also worth noting that understanding changes over time. Remember when GvR and the rest of the core developers argued adamantly against ordered dictionaries? Haha! Good times! Thank goodness their first wave of understanding wasn't their last. Concurrency and parallelism in Python was a TINY issue in 2006, but at the forefront of Python evolution these days. And immutability has come a long way as a design theme, even for languages that fully embrace stateful change.
> Also worth noting that understanding changes over time. Remember when GvR and the rest of the core developers argued adamantly against ordered dictionaries? Haha! Good times!
The new implementation has saved space, but there are opportunities to save more space (specifically after deleting keys) that they've now denied themselves by offering the ordering guarantee.
Ordering, like stability in sorting, is an incredibly useful property. If it costs a little, then so be it.
This is optimizing for the common case, where memory is generally plentiful and dicts grow more than they shrink. Python has so many memory inefficiencies that occasional tombstones in the dict internal structure is unlikely to be a major effect. If you're really concerned, do `d = dict(d)` after aggressive deletion.
> Ordering, like stability in sorting, is an incredibly useful property.
I can't say I've noticed any good reasons to rely on it. Didn't reach for `OrderedDict` often back in the day either. I've had more use for actual sorting than for preserving the insertion order.
This morning for example, I tested an object serialized through a JSON API. My test data seems to never match the next run.
After a while, I realized one of the objects was using a set of objects, which in the API was turned into a JSON array, but the order of said array would change depending of the initial Python VM state.
3 days ago, I used itertools.group by to group a bunch of things. But itertools.group by only works on iterable that are sorted by the grouping key.
Now granted, none of those recent example are related to dicts, but dict is not a special case. And it's iterated over regularly.
Personally, I find lots of reasons to prefer an orders Dict to an unordered one. Even small effects like "the debugging output will appear in a consistent order making it easier to compare" can be motivation enough in many use cases.
Thinking about this upfront for me, I am actually wondering why this is useful outside of equality comparisons.
Granted, I live and work in TypeScript, where I can't `===` two objects but I could see this deterministic behavior making it easier for a language to compare two objects, especially if equality comparison is dependent on a generated hash.
The other is guaranteed iteration order, if you are reliant on the index-contents relationship of an iterable, but we're talking about Dicts which are keyed, but extending this idea to List, I see this usefulness in some scenarios.
Beyond that, I'm not sure it matters, but I also realize I could simply not have enough imagination at the moment to think of other benefits
Same. Recently I saw interview feedback where someone complained that the candidate used OrderedDict instead of the built-in dict that is now ordered, but they'll let it slide... As if writing code that will silently do different things depending on minor Python version is a good idea.
Well it's been guaranteed since 3.7 which came out in 2018, and 3.6 reached end-of-life in 2021, so it's been a while. I could see the advantage if you're writing code for the public (libraries, applications), but for example I know at my job my code is never going to be run with Python 3.6 or older.
Honestly, if I was writing some code that depended on dicts being ordered I think I'd still use OrderedDict in modern Python. I gives the reader more information that I'm doing something slightly unusual.
It seems like opinions really differ on this item then. I love insertion sort ordering in mappings, and python with it was a big revelation. The main reason is that keys need some order, and insertion order -> iteration order is a lot better than pseudorandom order (hash based orders).
For me, it creates more reproducible programs and scripts, even simple ones.
It explains a lot about the design of Python container classes, and the boundaries of polymorphism / duck typing with them, and mutation between them.
I don't always agree with the choices made in Python's container APIs...but I always want to understand them as well as possible.
Also worth noting that understanding changes over time. Remember when GvR and the rest of the core developers argued adamantly against ordered dictionaries? Haha! Good times! Thank goodness their first wave of understanding wasn't their last. Concurrency and parallelism in Python was a TINY issue in 2006, but at the forefront of Python evolution these days. And immutability has come a long way as a design theme, even for languages that fully embrace stateful change.