I'm genuinely surprised that usize <=> pointer convertibility exists. Even Go has different types for pointer-width integers (uintptr) and sizes of things (int/uint). I can only guess that Rust's choice was seen as a harmless simplification at the time. Is it something that can be fixed with editions? My guess is no, or at least not easily.
There is a cost to having multiple language-level types that represent the exact same set of values, as C has (and is really noticeable in C++). Rust made an early, fairly explicit decision that a) usize is a distinct fundamental type from the other types, and not merely a target-specific typedef, and b) not to introduce more types for things like uindex or uaddr or uptr, which are the same as usize on nearly every platform.
Rust worded in its initial guarantee that usize was sufficient to roundtrip a pointer (making it effectively uptr), and there remains concern among several of the maintainers about breaking that guarantee, despite the fact that people on the only target that would be affected basically saying they'd rather see that guarantee broken. Sort of the more fundamental problem is that many crates are perfectly happy opting out of compiling for weirder platform--I've designed some stuff that relies on 64-bit system properties, and I'd rather like to have the ability to say "no compile for you on platform where usize-is-not-u64" and get impl From<usize> for u64 and impl From<u64> for usize. If you've got something like that, it also provides a neat way to say "I don't want to opt out of [or into] compiling for usize≠uptr" and keeping backwards compatibility.
> ...not to introduce more types for things like uindex or uaddr or uptr, which are the same as usize on nearly every platform. ... there remains concern among several of the maintainers about breaking that guarantee, despite the fact that people on the only target that would be affected basically saying they'd rather see that guarantee broken.
The proper approach to resolving this in an elegant way is to make the guarantee target-dependent. Require all depended-upon crates to acknowledge that usize might differ from uptr in order to unlock building for "exotic" architectures, much like how no-std works today. That way "nearly every platform" can still rely on the guarantee with no rise in complexity.
I brought up Go because it was designed around the same time and, while it gets a lot of flack for some of its other design decisions, this particular one seems prescient. However, I would be remiss if I gave the impression that the reasoning behind the decision was anticipation of some yet unseen future; the reality was that int and uint (which are not aliases for sized intN or uintN) were not initially the same as ptrdiff_t and size_t (respectively) on all platforms. Early versions of Go for 64-bit systems had 32-bit int and uint, so naturally uintptr had to be different (and it's also not an alias). It was only later that int and uint became machine-word-sized on all platforms and so made uintptr seem a bit redundant. However, this distinction is fortuitous for CHERI etc. support. Still, Go on CHERI with 128-bit uintptr might break some code, however such code is likely in violation of the unsafe pointer rules anyway: https://pkg.go.dev/unsafe#Pointer
Yet Rust is not Go and this solution is probably not the right one for Rust. As laid out in a link on a sibling comment, one possibility is to do away with pointer <=> integer conversions entirely, and use methods on pointers to access and mutate their addresses (which may be the only thing they represent on some platforms, but is just a part of their representation on others). The broader issue is really about evolving the language and ecosystem away from the mentality that "pointers are just integers with fancy sigil names".
I'd say, that even more than pointer sizes, the idea that a pointer is just a number really needs to die, and is in no way a forward looking decision expected of a modern language.
Pointers should at no point be converted into numbers and back as that trips up many assumptions (special runtimes, static/dynamic analysis tools, compiler optimizations).
Additionally, I would make it a priority that writing FFIs should be as easy as possible, and requires as little human deliberation as possible. Even if Rust is safe, its safety can only be assumed as long as the underlying external code upholds the invariants.
Which is a huge risk factor for Rust, especially in today's context of the Linux kernel. If I have an object created/handled by external native code, how do I make sure that it respects Rust's lifetime/aliasing rules?
What's the exact list of rules my C code must conform to?
Are there any static analysis/fuzzing tools that can verify that my code is indeed compliant?
C doesn't require convertibility to an integer and recognizes that pointers may have atypical representations. Casting to integer types has always been implementation defined. [u]intptr_t is optional specifically to allow such platforms to claim standard conformance.
> Which is a huge risk factor for Rust, especially in today's context of the Linux kernel. If I have an object created/handled by external native code, how do I make sure that it respects Rust's lifetime/aliasing rules?
Can you expand on this point? Like are you worried about whether the external code is going to free the memory out from under you? That is part of a guarantee, the compiler cannot guarantee what happens at runtime no matter what the author of a language wants, the CPU will do what it's told, it couldn't care about Rusts guarantees even if you built your code entirely with rust.
When you are interacting with the real world and real things you need to work with different assumptions, if you don't trust that the data will remain unmodified then copy it.
No matter how many abstractions you put on top of it there is still lighting in a rock messing with 1s and 0s.
> Is it something that can be fixed with editions? My guess is no, or at least not easily.
Assuming I'm reading these blog posts [0, 1] correctly, it seems that the size_of::<usize>() == size_of::<*mut u8>() assumption is changeable across editions.
Or at the very least, if that change (or a similarly workable one) isn't possible, both blog posts do a pretty good job of pointedly not saying so.
Personally, I like 3.1.2 from your link [0] best, which involves getting rid of pointer <=> integer casts entirely, and just adding methods to pointers, like addr and with_addr. This needs no new types and no new syntax, though it does make pointer arithmetic a little more cumbersome. However, it also makes it much clearer that pointers have provenance.
I think the answer to "can this be solved with editions" is more "kinda" rather than "no"; you can make hard breaks with a new edition, but since the old editions must still be supported and interoperable, the best you can do with those is issue warnings. Those warnings can then be upgraded to errors on a per-project basis with compiler flags and/or Cargo.toml options.
> Personally, I like 3.1.2 from your link [0] best, which involves getting rid of pointer <=> integer casts entirely, and just adding methods to pointers, like addr and with_addr. This needs no new types and no new syntax, though it does make pointer arithmetic a little more cumbersome. However, it also makes it much clearer that pointers have provenance.
Provenance-related work seems to be progressing at a decent pace, with some provenance-related APIs stabilized in Rust 1.84 [0, 1].
This feels antithetical to two of the main goals of editions.
One of those goals is that code which was written for an older edition will continue to work. You should never be forced to upgrade editions, especially if you have a large codebase which would require significant modifications.
The other goal is that editions are interoperable, i.e. that code written for one edition can rely on code written for a different edition. Editions are set on a per-crate basis, this seems to be the case for both rustc [1] and of course cargo.
As I see it, what you're saying would mean that code written for this new edition initially couldn't use most of the crates on crates.io as dependencies. This would then create pressure on those crates' authors to update their edition. And all of this would be kind of pointless fragmentation and angst, since most of those crates wouldn't be doing funny operations on pointers anyway. It might also have the knock-on effect of making new editions much more conservative, since nobody would want to go through that headache again, thus undermining another goal of editions.
If the part about how "most of those crates wouldn't be doing funny operations on pointers" can be verified automatically in a way that preserves safety guarantees when usize != uaddr/uptr, these crates can continue to build without transitioning to a newer edition. Otherwise, upgrading these crates is the right move. Other code targeting earlier editions of Rust would still build, they would simply need a compiler version update when depending on the newly-upgraded crates.