This can be translated to the discrete domain pretty easily, just like the NTT. Pick a sufficiently large prime with order 15k, say, p = 2^61-1. 37 generates the whole multiplicative group, and 37^((2^61-2)/3) and 37^((2^61-2)/5) are appropriate roots of unity. Putting it all together yields
This involves 6 exponentiations by n with constant bases. Because in fizzbuzz the inputs are sequential, one can further precompute c^(2^i) and c^(-2^i) and, having c^n, one can go to c^(n+1) in average 2 modular multiplications by multiplying the appropriate powers c^(+-2^i) corresponding to the flipped bits.